Monday, August 2, 2021

459 - Prokaryotes Provide Polyp Perserverance

Coral
By Brocken Inaglory
CC BY-SA 4.0
This episode: Transplanting microbes from some corals to others could help the corals survive high temperatures!

Download Episode (5.7 MB, 8.3 minutes)

Show notes:
Microbe of the episode: Streptomyces olivaceoviridis

News item

Takeaways
The ever-rising temperatures of our modern world are putting more and more stress on various ecosystems. This is true even on the ocean floor: record-high temperatures damage reefs by causing coral bleaching, in which corals lose their photosynthetic endosymbionts. If conditions do not improve, these corals eventually die.

Corals have microbial symbionts other than the phototrophs, also. We know from ourselves and from plants that microbes can have big effects on their hosts, so it seemed worth testing whether symbionts from more heat-resistant corals could transfer heat resistance to more vulnerable individuals. Recipients of this treatment did show enhanced heat resistance, but the microbial community composition did not always change after the treatment.

Journal Paper:
Doering T, Wall M, Putchim L, Rattanawongwan T, Schroeder R, Hentschel U, Roik A. 2021. Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome 9:102.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, July 19, 2021

458 - Slimy Cells Stop Sinking

Colonies of strains with
different floating strengths
By Kessler et al. 2021,
J Bacteriol 203(11):e00023-21
CC BY 4.0
This episode: Bacteria can resist the force of gravity in liquid culture by covering themselves with goopy sugar polymers like parachutes!

Download Episode (10.4 MB, 15.2 minutes)

Show notes:
Microbe of the episode: Brevicoryne brassicae virus

Takeaways
Put bacteria in a centrifuge, and most of the time you end up with a compact pellet of cells at the bottom of the tube, and mostly cell-free liquid above it. Bacteria do have ways to remain suspended in liquid, even without constant stirring or shaking of the container, but swimming, for example, consumes energy.

In this study, artificial selection allowed the discovery of bacteria that could resist centrifuging speeds up to 15000 times the force of gravity, remaining suspended in liquid instead of forming a pellet. Production of polysaccharide was important, but not sufficient; for the most resistance to sinking, bacteria had to attach the polysaccharide to their cell surface, to act as a sort of parachute.

Journal Paper:
Kessler NG, Caraballo Delgado DM, Shah NK, Dickinson JA, Moore SD. 2021. Exopolysaccharide Anchoring Creates an Extreme Resistance to Sedimentation. J Bacteriol 203(11):e00023-21.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, June 28, 2021

457 - Small Cell Studies: Superior Scoops

Plant microbiome
By KMG Dastogeera et al.
CC BY-SA 4.0
This episode: Newspapers report on scientific studies about microbiomes a fair amount, but certain kinds of studies are more likely than others to show up in the news!

Download Episode (5.7 MB, 8.3 minutes)

Show notes:
Microbe of the episode: Cafeteriavirus-dependent mavirus

Takeaways
Research into the human microbiome has generated a lot of interest, even among non-scientists. This is especially true since the beginning of the Human Microbiome Project in 2007. But sometimes things are lost in translation from published studies into general news.

This study is a survey of microbiome studies reported in six different news sources from three different countries, either general news or business news. General news did a better job reporting on different kinds of microbiome studies proportionally, but certain kinds of studies were reported on proportionally more or less frequently than they were published.

Journal Paper:
Prados-Bo A, Casino G. 2021. Microbiome research in general and business newspapers: How many microbiome articles are published and which study designs make the news the most? PLOS ONE 16:e0249835.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, June 21, 2021

456 - Invader Induces Increased Immensity

Sulfolobus infected
with STSV1
By Xiangyux
From Wikipedia
This episode: A virus of archaea stops cells from dividing, so they just keep getting bigger and releasing more viruses!

Download Episode (6.9 MB, 10.1 minutes)

Show notes:
Microbe of the episode: Streptomyces caelestis

Takeaways
Viruses affect their hosts many different ways: instant hostile takeover of cellular machinery, lurking unseen in the genome for generations, inducing reduced cell division or excessive cell division, and more. Archaeal viruses are relatively unknown in their genetic abilities and lifestyles, but we do know that they tend not to destroy their hosts through explosive viral reproduction, and that some archaea have eukaryote-like cell cycle phases.

In this study, some viruses infecting a thermophilic archaeon interrupt its cycle in the growth phase, so hosts expand in size up to around 17 times normal, continuously releasing new viruses over time. Eventually some archaea in the population gain resistance to the viruses via their CRISPR/Cas systems, and normal-sized cells dominate the population again.

Journal Paper:
Liu J, Cvirkaite-Krupovic V, Baquero DP, Yang Y, Zhang Q, Shen Y, Krupovic M. 2021. Virus-induced cell gigantism and asymmetric cell division in archaea. Proc Natl Acad Sci 118:e2022578118.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, June 7, 2021

455 - Marine Microbes Make Megapascal Management Molecule

Myroides profundi
By Qin et al. 2021,
Sci Adv 7:eabf9941
CC BY-NC 4.0
This episode, in honor of World Ocean Day: Bacteria that may move between high and low pressure areas in the ocean use a particular molecule to protect their cells from being crushed!

Download Episode (6.6 MB, 9.5 minutes)

Show notes:
Microbe of the episode: Rickettsia rickettsii

News item

Takeaways
Life in the ocean can have many challenges, depending on the organism and where it lives. Microbes can be found in almost every region, from the warmest to coldest, brightest to darkest, and shallowest to deepest. Sometimes microbes are carried from shallow to deep regions, where the weight of so much water causes immense pressure, which can inhibit cellular structural integrity and function. So life in the deep sea must have ways to deal with this pressure to survive. In this study, bacteria transform a fairly common chemical into a molecule that cushions and protects their cellular structures from the effects of high pressure, allowing them to survive lower down than they would otherwise.

Journal Paper:
Qin Q-L, Wang Z-B, Su H-N, Chen X-L, Miao J, Wang X-J, Li C-Y, Zhang X-Y, Li P-Y, Wang M, Fang J, Lidbury I, Zhang W, Zhang X-H, Yang G-P, Chen Y, Zhang Y-Z. 2021. Oxidation of trimethylamine to trimethylamine N -oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. Sci Adv 7:eabf9941.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, May 31, 2021

454 - Hitchhiking Horticultural Helpers

Bacteria carrying spores
By Muok et al. 2021
ISME J, CC BY 4.0
This episode: Spores of some bacteria latch onto the tails of other bacteria and ride along as they move around in the soil!

Download Episode (5.5 MB, 8.0 minutes)

Show notes:
Microbe of the episode: Bohle iridovirus

News item

Takeaways
The soil is a complex environment, and microbes that live in soil need complex lifestyles to thrive. There are many examples of cooperation, competition, and other adaptations to highly varied situations.

In this study, bacteria that grow like filamentous fungi don't have the mechanisms to move autonomously, but their spores can hitch rides on other kinds of bacteria that swarm through the soil using their propeller-like tails called flagella to push themselves toward the plant roots they prefer to grow near.

Journal Paper:
Muok AR, Claessen D, Briegel A. 2021. Microbial hitchhiking: how Streptomyces spores are transported by motile soil bacteria. ISME J.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, May 24, 2021

453 - Phenazine Faciliates Phosphorus Feeding

Pseudomonas aeruginosa
By Y_tambe, CC BY-SA 3.0
This episode: Some bacteria produce antibiotics that can also help them gather more nutrients!

Download Episode (5.0 MB, 7.3 minutes)

Show notes:
Microbe of the episode: Diadromus pulchellus toursvirus

News item 1

Takeaways
Antibiotics have saved a lot of lives since they were discovered and used to treat many previously untreatable bacterial infections. But bacteria themselves have been making antibiotics much longer than we have, to help compete in their environment. However, sometimes these compounds are not produced in large enough concentrations to act as antibiotics, killing or inhibiting rival bacteria. Why waste energy on this sublethal production? Are there other functions these molecules can perform?

In this study, bacteria produce an antibiotic called phenazine that can damage cell components by redox reactions, transferring electrons. But it can also help liberate the essential nutrient phosphorus from being bound to insoluble particles, allowing the bacteria to grow better even in the absence of competitors.

Journal Paper:
McRose DL, Newman DK. 2021. Redox-active antibiotics enhance phosphorus bioavailability. Science 371:1033–1037.
Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.