Phage stuck to non-host bacterium By You et al, 2022, ISMEJ 16:1275-1283 CC BY 4.0 |
Download Episode (7.1 MB, 10.3 minutes)
Show notes:
Microbe of the episode: Epinotia aporema granulovirus
Takeaways
For tiny bacteria, partially dry soil can be like a vast system of caverns, with particles of soil separated by air-filled spaces much bigger than individual bacteria. Not all bacteria can swim through liquid, and those that can’t simply try to thrive as best they can wherever they may be. But for those that can swim, fungi and other filamentous organisms can form bridges between soil particles that motile bacteria can swim across, reaching new places.
In this study, phages were found to hitch a ride on bacteria they don’t normally infect, crossing fungus-like filaments to new places and infecting the bacteria they find there. The bacteria carrying them can also benefit from this interaction, since the phages help the carrier bacteria compete and establish a colony in the new location.
In this study, phages were found to hitch a ride on bacteria they don’t normally infect, crossing fungus-like filaments to new places and infecting the bacteria they find there. The bacteria carrying them can also benefit from this interaction, since the phages help the carrier bacteria compete and establish a colony in the new location.
You X, Kallies R, Kühn I, Schmidt M, Harms H, Chatzinotas A, Wick LY. 2022. Phage co-transport with hyphal-riding bacteria fuels bacterial invasion in a water-unsaturated microbial model system. 5. ISME J 16:1275–1283.
Other interesting stories:
- Fungus species discovered in spacecraft assembly facility
- Oral microbes uniquely influence immune system interaction with mouth bones
Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!
Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.