Monday, September 20, 2021

463 - Selectively Stimulating Cell Squatters

Bacteriophages
By Jancheva and Böttcher
2021, JACS 143:8344-8351
CC BY 4.0
This episode: Bacteria produce a compound that causes a phage lurking in the genome of a competing species to wake up and start killing that competitor!

Download Episode (8.2 MB, 12.0 minutes)

Show notes:
Microbe of the episode: Zaire ebolavirus

News item

Takeaways
Some bacteriophages infect and immediately destroy their hosts in a burst of new viruses, while others can be stealthier, integrating their genome into the genome of the host and remaining there quietly even over multiple generations of the bacteria. When something stresses the host, such as DNA damage, these integrated phages (prophages) become active and start producing new viruses, killing their host like the other kind does.

In this study, one kind of bacteria release a chemical that wakes up phages in a competitor species of bacteria. This is helpful for competition, but even more interesting is that out of the six prophages in the competitor species, the chemical wakes up only one of them. Such selective phage induction could be interesting to study.

Journal Paper:
Jancheva M, Böttcher T. 2021. A Metabolite of Pseudomonas Triggers Prophage-Selective Lysogenic to Lytic Conversion in Staphylococcus aureus. J Am Chem Soc 143:8344–8351.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, September 13, 2021

462 - Super Ciliate Symbiont Set

Pseudoblepharisma tenue
By Muñoz-Gómez et al, 2021,
Sci Adv 7:eabg4102, CC BY 4.0
This episode: A eukaryote has symbionts living in it: green algae and also purple bacteria, a combo never seen before!

Download Episode (6.1 MB, 8.8 minutes)

Show notes:
Microbe of the episode: Staphylococcus virus phiETA

News item

Takeaways
Having bacteria as endosymbionts is fairly common in life on Earth: almost all eukaryotes have them in the form of mitochondria and sometimes chloroplasts. These former bacteria somehow got inside the ancestral eukaryote, either as parasites or as prey, and ended up as integral parts of their host's metabolic functions. Some organisms, especially insects, obtained bacterial endosymbionts more recently, that help them balance their metabolic needs when living on limited diets.

Algae have been known to be endosymbionts also, performing photosynthesis for their host. But in this study, a ciliate with both algae and purple photosynthetic bacteria as endosymbionts was discovered. Purple bacteria as symbionts is rare, and this combination has not been observed before. Interestingly, though algae produce oxygen through their photosynthesis, the ciliate prefers living in low-oxygen sediment at the bottom of a pond. The symbionts and their host seem to adjust their metabolisms as needed depending on the needs at the time; they may each perform photosynthesis, fermentation, or respiration if light, organic carbon, or oxygen are available.

Journal Paper:
Muñoz-Gómez SA, Kreutz M, Hess S. 2021. A microbial eukaryote with a unique combination of purple bacteria and green algae as endosymbionts. Sci Adv 7:eabg4102.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.

Monday, September 6, 2021

461 - Ingrained Invader Inhibits Infectors

Lambda phage
By Hans-Wolfgang Ackermann
Swiss Institute of Bioinformatics
CC BY 4.0
This episode: Training a phage strain on bacteria can increase its ability to control those bacteria for much longer than an untrained phage!

Download Episode (5.7 MB, 8.3 minutes)

Show notes:
Microbe of the episode: Pepper yellow leaf curl Indonesia virus

News item

Takeaways
With resistance to antibiotics spreading more and more among deadly bacteria, finding alternatives to treat infections is becoming more important. One option is phage therapy, using viruses that infect bacteria to weaken or wipe out pathogens, but this can be tricky. Sometimes it takes too long to prepare an effective population of phage for treatment, and sometimes the target pathogen evolves resistance to the phage too quickly

In this study, a phage that was trained, or pre-evolved, to infect specific bacteria more effectively, was able to dominate the population consistently and prevent it from becoming fully resistant. For comparison, against an untrained strain of the same phage, the bacteria developed almost complete resistance after several days.

Journal Paper:
Borin JM, Avrani S, Barrick JE, Petrie KL, Meyer JR. 2021. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance. Proc Natl Acad Sci 118.

Other interesting stories:

Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!

Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.