Myroides profundi By Qin et al. 2021, Sci Adv 7:eabf9941 CC BY-NC 4.0 |
Download Episode (6.6 MB, 9.5 minutes)
Show notes:
Microbe of the episode: Rickettsia rickettsii
News item
Journal Paper:
Qin Q-L, Wang Z-B, Su H-N, Chen X-L, Miao J, Wang X-J, Li C-Y, Zhang X-Y, Li P-Y, Wang M, Fang J, Lidbury I, Zhang W, Zhang X-H, Yang G-P, Chen Y, Zhang Y-Z. 2021. Oxidation of trimethylamine to trimethylamine N -oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. Sci Adv 7:eabf9941.
Other interesting stories:
Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!
Takeaways
Life in the ocean can have many challenges, depending on the organism and where it lives. Microbes can be found in almost every region, from the warmest to coldest, brightest to darkest, and shallowest to deepest. Sometimes microbes are carried from shallow to deep regions, where the weight of so much water causes immense pressure, which can inhibit cellular structural integrity and function. So life in the deep sea must have ways to deal with this pressure to survive. In this study, bacteria transform a fairly common chemical into a molecule that cushions and protects their cellular structures from the effects of high pressure, allowing them to survive lower down than they would otherwise.
Qin Q-L, Wang Z-B, Su H-N, Chen X-L, Miao J, Wang X-J, Li C-Y, Zhang X-Y, Li P-Y, Wang M, Fang J, Lidbury I, Zhang W, Zhang X-H, Yang G-P, Chen Y, Zhang Y-Z. 2021. Oxidation of trimethylamine to trimethylamine N -oxide facilitates high hydrostatic pressure tolerance in a generalist bacterial lineage. Sci Adv 7:eabf9941.
Other interesting stories:
Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!
Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.
No comments:
Post a Comment