A choanoflagellate By Daniel Stoupin CC BY-SA 3.0 |
Download Episode (7.8 MB, 11.4 minutes)
Show notes:
Microbe of the episode: Dolphin mastadenovirus A
News item
Takeaways
Giant viruses are distinct in many ways from other viruses, even aside from their size. One way is the large number and variety of genes they carry in their genome. Though many of their genes are unknown in origin and function, many others appear to take the place of essential reproductive functions, such as translation and protein synthesis. This allows them to assume more control of their host's metabolism and control its resources more optimally.
In this study, the sequence of a giant virus was discovered seemingly infecting a newly discovered microscopic marine predator. The eukaryotic cell feeds on smaller microbes such as bacteria, but strangely, the virus carries genes for several light-harvesting proteins, possibly converting a heterotrophic predator into a partial phototroph.
Journal Paper:
Needham DM, Yoshizawa S, Hosaka T, Poirier C, Choi CJ, Hehenberger E, Irwin NAT, Wilken S, Yung C-M, Bachy C, Kurihara R, Nakajima Y, Kojima K, Kimura-Someya T, Leonard G, Malmstrom RR, Mende DR, Olson DK, Sudo Y, Sudek S, Richards TA, DeLong EF, Keeling PJ, Santoro AE, Shirouzu M, Iwasaki W, Worden AZ. 2019. A distinct lineage of giant viruses brings a rhodopsin photosystem to unicellular marine predators. Proc Natl Acad Sci 116:20574–20583.
Other interesting stories:
- Deep-sea mussels collect multiple symbiont microbes to use best one for current environment
- Microscopic water droplets help bacteria survive on dry leaves
Post questions or comments here or email to bacteriofiles@gmail.com. Thanks for listening!
Subscribe: Apple Podcasts, Google Podcasts, Android, or RSS. Support the show at Patreon, or check out the show at Twitter or Facebook.
No comments:
Post a Comment